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Nonequilibrium Real Time Green's 
Functions and the Condition of 
Weakening of Initial Correlation 
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A new method is given to calculate real-time Green's functions in non- 
equilibrium from the hierarchy of equations of motion in connection with the 
boundary condition of weakening of initial correlations. The way of deriving a 
generalized quantum Boltzmann equation is shown. 
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1. I N T R O D U C T I O N  

The nonequilibrium properties of a quantum many-particle system can be 
described by the one-particle Green's function gl(1, 1') defined by (l) 

gl(1, l')=lTr{pT[t~(1)~+(1')] } (1) 
l 

where p is the unknown nonequilibrium density operator and T represents 
the Wick time ordering operation. The notation means 1 = rl, t,, etc. In 
addition to (1) the correlation functions are 

g~(1, 1') = 1  Tr{p@(1) ~+(1')} (2a) 
t 

g?( l ,  1 ')= _+-t Tr{pO+(l')~,(1)} (2b) 
t 
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The connection to the one-particle density matrix p, is given by 

p,(rl, r'l; t )=  +_ig?(1, l')l,,=~= , (3) 

In order to determine the Green's function we start from the well-known 
hierarchy of equations of motion for the real-time Green's functions, given 
by Martin and Schwinger. ~1) The first equations are 

Iio-~1+2-mmV2-u(1)lg~(l'l')=6(1-1')+-ifd2V(l'2)g2(12'l'2+ ) (4) 

I i~ t l  +vz-~mm U(1)]g2(12, 1'2') = 6(1 - 1') g~(2, 2 ')+6(1 - 2 ' )  gl(2, 1') 

-t- i f  d3 V(1, 3)g3(123, 1'2'3 +) (5) 

where g,(12. . .n,  l '2 ' . . .n ' )  is the n-particle Green's function, 
V(1,2)= V(rl-r2) 6(t l- t:)  is the two-body potential, and U(1) is the 
external potential. These equations are very general, which means they do 
not depend on the kind of averaging. Therefore boundary conditions are 
necessary to obtain solutions for a special kind of averaging. For example, 
in the case of thermodynamic equilibrium, the system is described by the 
grand canonical density operator and the solutions are determined by the 
KMS condition for the imaginary-time domain. ~1'2) For the one-particle 
Green's function one has 

G(1, l')lt~=0 = +_e/3~G(1, 1')/~1= i/~ (6) 

Here # is the chemical potential, and/} = l/k8 T. The G denotes the Green's 
function defined for imaginary times. 

In nonequilibrium situations, the KMS condition is not applicable. Up 
to now there exist two possibilities for the determination of nonequilibrium 
Green's functions: 

(i) Kadanoff and Baym have performed an analytic continuation of 
the imaginary-time Green's functions to their real-time counterparts, 
assuming the system initially to be in thermodynamic equilibrium. (2) 

(ii) In order to deal directly with real-time Green's functions in non- 
equilibrium situations, Keldysh introduced a diagrammatic perturbation 
scheme in order to evaluate the Green's functions in the interaction 
picture. (3) The technique is based on the use of a closed contour of 
chronological and antichronological time ordering. 

The aim of this paper is to follow the consequent way of equations of 
motion for the determination of real-time Green's functions in non- 
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equilibrium. A new method then is given to calculate real-time Green's 
functions directly from the hierarchy of equations of motion using the usual 
boundary condition of kinetic theory. This method is demonstrated for the 
simple case of binary collision approximation deriving the quantum 
Boltzmann equation. The generalization of the Boltzmann equation which 
takes into account medium-dependent three-particle scattering is discussed 
in the last section. A generalization of the Boltzmann equation taking into 
account phase space occupation was also given by Boercker and Dufty, t~2) 
who started from the BBGKY hierarchy. 

2. B O U N D A R Y  C O N D I T I O N  A N D  B I N A R Y  C O L L I S I O N  
A P P R O X I M A T I O N  

It is known that Green's functions are powerful quantities for the 
description of a many-particle system. We will determine real-time Green's 
functions in connection with the Bogoljubov condition of the total weaken- 
ing of the initial correlation. That means we will solve the equations of 
motion with a boundary condition which reads for instance for the time- 
specialized Green's function describing the propagation of two particles in 
a many-particle system: 

tl lim g2(12, 1'2')111=,2 = gl(1, 1') g l ( 2 , 2 ' ) + g l ( 1 , 2 ) g l ( 2 ,  1') (7) . . . . .  /2=,~ 

Here the two possibilities for the case of equal times are taken into account 
by the limit t'~ = t ~  = t,  +_ e. The boundary condition (7) is appropriate for 
situations in which long-time correlations and precollision spatial 
correlations are negligible. In this case the nonequilibrium properties of the 
system can be described by the one-particle Green's function. In systems 
with bound states and large-scale fluctuations the Bogoljubov condition of 
the form (7) is insufficient and must be generalized. (5 7) In the following we 
will consider such systems for which the condition (7) is possible. 

In order to derive a kinetic equation for gl(1, 1') it is necessary to get 
solutions for g2(12, 1'2') which satisfy the Bogoljubov condition (7). To 
demonstrate this concept we consider first the simple case of the binary 
collision approximation. In this approximation g2 can be determined by the 
following equation, which arises from the Martin-Schwinger hierarchy by 
neglecting higher than two-particle collisions and self-energy corrections to 
the one-particle Green's function: 

i a t + ~ - m m  - U(1) + 2m'2 _ U(2) {g2(12, 1 ' 2 ' ) -  g~ 1') g~ 2') 

T- g~ 2') g~ 1')} = i V ( i ,  2) g2(12, 1'2') (8) 



664 Kremp, Schlanges, and Bornath 

where gO is the free one-particle Green's function satisfying 

[ v2 I , ~ + ' 1 - u ( 1 )  xO(1,1 = a ( 1 - 1 ' )  
i&- 7 2m 

A solution, satisfying the Bogoljubov condition (7), follows directly from 
(8) and can be represented in the form (tl = t2, t'l = t~) 

g~(12, 1'2't = ~ff(12, 1'2') + i did2 V(i, 2) 
- - o O  

x {N2(12, i2) g~(i2, 1 '2 ' ) -N~(12,  i2) g~>(i2, 1'2')} (9) 

(here we have denoted the binary collision approximation by the 
superscript L), where 

N~F(12, 1'2')= g~ 1') g~ g~ 2') gl~ 1') (10) 

The function N2(12, 1'2') is given by (10) without the exchange term. In (8) 
and (9) the approximation of free particles is used for the one-particle 
Green's function. It is easily proved that (9) is a solution of Eq. (8). The 
fact that the boundary condition (7) is fulfilled can be seen from (9) if one 
splits up the region of time integration for a special time order of tl and t] : 

d i =  dil + d[1 + 'i d[1 (for t~ < t]) 
- -  o O  - -  1 

For the further considerations it is useful to introduce a T matrix by the 
definition 

(rlrz[ T,z(t,  t') [r'lr;) = V(r l - r2)  6 ( r l - r ' l )  3( r2-  r~) 6 ( t -  t') 

+ i V ( r , - r 2 )  ~( r l r2 t ,  r'lr~t') V(r ' l - r ; )  (11) 

where ~ is the two-particle Green's function without the exchange con- 
tribution. Using (9) we get the following equation for T12 

(rlrzl Tlz(t, t') [r'lr~) = V(rl -r2)  h(rl-r' l)  6(r2 -r~)  6 ( t -  t') 

+ i d [ ~ 2  V(r~ - r 2 )  Nz(rlr2t, r~r2t-) 
- - o o  

x (~1~21 TI2(i  , t ' ) I r l r l )  

- i d ia~l~2 V(rl --r2) ~f~(rlr2t, rl['2/) 

• (rlr2l T~2(t-, t ' ) I r ; r l )  (12) 
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It can be shown that Eq. (12) is the many-particle version of the T matrix 
of ordinary scattering theory, which takes into account the Pauli blocking 
in the two-particle scattering in nonequilibrium situations. Especially the 
optical theorem follows from (12) which already was derived by 
Baerwinkel ~8/on the basis of the Kadanoff-Baym technique. 

Let us now consider the right-hand side of Eq. (4) for g~(l, 1') in the 
case t~ < t]. Using the symmetrized (antisymmetrized) T matrix we find 

fd2 V(1, 2)g~(12, 1'2 + ) 

with 

f 
c ~  

= d2did2{(12l T~2 li2-) +- f#2(i2-, 1'2 +) 
oo 

- (121T~2 1i2)  +- fr 1 '2+)}  (13) 

(12[ T12 !1'2') -+ = (rlrzl  Tlz(tx, t'l)ir'lr~) -+ 6(tl- t2)6(t'1- t'2) 

If we replace the free by the full one-particle Green's function up to higher 
orders and if we introduce the self-energy in binary collision 
approximation, 

L'(2)(1, 1 ')= ++.ifd2d2 (121T~2 11'2) -+ g1(2, 2 +) (14) 

we get the structure of the well-known equation of motion for g~(1, 1') 
given by Kadanoff and Baym, ~2) 

+ ~ ~ di > - S(2)(11 ) g r  

+ di S(~)(li) g~ ( i l ' )  
1 

+ ,i di Z~)( l i )  g~ ( i l ' )  (15) 

which in our case is a direct consequence of the boundary condition (7). 
We want to underline that the boundary condition for g2 leads to a 

corresponding condition for the total self-energy, 

f d2 V(1, 2) g2(12, 1'2 + lim_~ t ~  
t l  

- - f  d2 V(1, 2){ga(1, 1') ga(2, 2 + )_+ g~(1, 2 + ) g~(2, 1')) 

= T-if d~ SHV(r~, t~) g~(~t~, r'l t'l) (16) 



666 Kremp, Schlanges, and Bornath 

Using (16) in the equation of motion (4) for gl one can derive the general 
form of the Kadanoff-Baym kinetic equation which is given by (15) replac- 
ing L'(2) by the total self-energy. That means the Eq. (15) is valid for any 
approximation of the self-energy. 

In the further approach one can follow the techniques used in Ref. (2). 
Taking into account the optical theorem for the real-time T matrix we 
finally get the quantum Boltzmann equation in binary collision 
approximation. 

3. GENERALIZATION OF THE BOLTZMANN EQUATION 

In order to take into account higher approximations with respect to 
the particle correlation, a cluster expansion for g2 must be used at the 
right-hand side of Eq. (4). The main line for doing this in the presented 
theory should be briefly explained. 

From the hierarchy of equations of motion, the following cluster 
expansion was derived(9~: 

g2(12, 1'2') = g~(12, 1'2') + f d3d3 gO ~(3, 3) 

x [g~(123, 1'2'3+) - g~(12, 1'2') g~ 3+)] (17) 

The first term, g~, is the contribution of the binary collision 
approximation, determined by Eq. (9). The second term describes the 
influence of the three-particle correlations. 

We want to underline that all times are different in (17). In Eq. (4) a 
special case of the two-particle Green's function must be used depending 
only on two time arguments. To get the similar dependence on two time 
arguments in the contribution of three-particle correlations, we consider 
the three-particle Green's function g~ for the special case tx = t2 = t3 and 
(for simplicity) t~ = t~ = t~. The Bogoljubov condition takes the form 

lim g123(tl, t'l)lti=,? = gl(tl, t'l) g2(t , ,  t'l) g3(tl, t'l) 
l I ~ - - o 0  

-t- exchange terms (18) 

Then the following solution can be derived approximately for the con- 
sidered time specialization in the case of three-particle Ladder 
approximation~9): 
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gf23(tl, t'l) = ~123(tl, t'l) -+- exchange terms 

f +~176 + i 2 ~ d{t (ff123(tl, {1)/3~2ff3([1) g123(L {1, t l )  

-- i2 d[1 ~ 1 2 3 ( t l , / - 1 )  eft - L> - ~  < v123(tl) g123 (/1, t'~) (19) 

where we have for free particles 

fq123(t, t ' )=  g~ t') g~ t') g~ t') 

In (19) an effective three-particle potential was introduced which in lowest 
order of the one-particle correlation functions gO<(t) (i = 1, 2, 3) is given by 

eft __ eft V123(t ) -- V12(t ) q- Vel~3(t) + V~g(t) 

= [ 1 - - i g ~  t)] V12+ [1-- ig~ 03 V,3 (20) 

+ [ 1 - - i g ~  t)] V23 

In (18), (19), and (20) a matrix notation for the space variables was used 
in which multiplication involves integrating the coordinate matrix indices 
over all space. 

It can be seen that the pure three-particle potential V123= 
V~2 + V13 + V23 follows from (20) in the low-density limit if the correlation 
functions are negligible. 

It is useful to define a T matrix by 

T123(/ ,  t ' )  =/)~ff3(/)  6 ( t - -  if)  

+ i2v~g3(t) g~z3(t ' , eft t t ) / ) 1 2 3 ( / )  ( 2 1 )  

(sometimes we will use a modified T matrix given by T { ~  
(v~2 + v~3) + i2(v~g+ v ~ )  ~L ~rr ~ ~L g123V123) Here g123 is the three-particle Green's 
function without the exchange contribution. Using (19) the following 
equation for TI2 3 c a n  be derived from (21): 

T123(t1, t,1) eff = V123(t1) ~i(tl -- t'l) 

f+o9 
+ i 2 d[ 1 e~ /)123(tl) ~123(tl, {1) T123(/1, t'l) 

o0 

i 2 dil  ~ - T123(tl, t'l) (22) 
--09 

A T matrix formulation is presented by Eq. (22) which describes three-par- 
ticle scattering in a nonequilibrium many-body medium. Similar equations 
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are given in Ref. 10 for the case of thermodynamic equilibrium using 
(imaginary-time) diagram techniques. Now we insert the cluster expansion 
(17) in Eq. (4) for g~ specializing the time arguments in the right manner. 
Introducing the self-energy we get the known structure of Eq. (15) replac- 
ing 27(2 ) by 27(3), which is given by the expansion 

S(3)(1, 1')= _ ild2d2 (121 T~2 11'2) -+ g1(22 + ) 

+ 21 ( + i) 2 i d  2 d3 d2 d3{ (1231T 1~ 11'23 >-+ g1(22+) g1(33 +) 

- R(1, 2, 3; 1 ' 2 + 3 + ) }  (23) 

In the derivation of (23) the functions gO are replaced by g. With R we 
have taken into account the corresponding self-energy contributions and 
the disconnected three-particle terms. (9) 

Finally we will give the generalization of the Boltzmann equation for 
the one-particle distribution function which can be derived from Eq. (15) 
with the self-energy (23) in three-particle collision approximation. Follow- 
ing the techniques used in Ref. 2 we get for the spatially homogeneous case 

{ ~ T - I V ,  U(R, T ) '  Vpl} f(p, T)=I2(p)+I3(p)+IR(p) (24) 

where -V~U(R,  T)=F(T) is the external force field. The two-particle 
collision integral is given by 

1 f dpl dp2 dP2 1 
12(p) = V  (2x) 3 (21r) 3 (2~) 3 2! I(PlP2I ~-]2(E~2+ iO, T)[plp2)-+l 2 

x 2~6(E12- E 1 2 ) { f l f 2 ( l  +f,)(1 + f j -  (1 +f,)(1 +f2)J]f2} 
(25) 

For the three-particle collision integral we get the expression 

27c~(E123 -- E123) (2r0 3 (210 3 (2re) 3 (2/~) 3 (2re) 3 

1 
x ~.. I(PlPzP31 ~23(E,23 + i0, T) IP,P~P~ 7-+12, . . . . .  ted 

x {LLA(1 +A)(1 + f2)(1 + f 3 ) -  (1 +L)(1 +L)(1 +L)Lf2f3} 
(26) 



Nonequilibrium Real Time Green's Functions 669 

where f l = f ( p l ,  T); f l = f ( ~ l ,  T), etc. are the momentum distribution 
functions and E~2, E123 are the scattering energies of free particles. It can be 
seen that the collision integrals are expressed by retarded T matrices which 
describe the scattering in the nonequilibrium many-particle system. 

Because of the integration over P2 and P3 we can use in 13 the T matrix 
~1123 instead of ~--~0 3 [-cf. Eq. (23)]. 

~23(z, T) is given by (9) (operator notation) 

~1123(Z, T) ~-- l)~2ff3(T) -[-/)~ff3(T) ~t23(z, T) ~II23(z, T) (27) 

where 

dfD .(~23((.O, T) -- ~23((D, T) 
~r T) 

- J 2 ~  z -  co 
(28) 

With ~1123 the contribution of the medium dependent three-particle scatter- 
ing to the corresponding collision integral (26) is given. Especially a time- 
dependent effective three-particle potential appears in the T matrix 
equation (27). 

The term IR arises from self-energy corrections R. To lowest 
approximation this term is found to be 

1 f alp2 dp3 
IR = -- ~ (27r)3 (2g)3 (PlP2P3] [V12, ~12(f2t3flf2f3921+3 

-- f t  fz f3)  ~Q~2 q- ~212('(-223Lf2f3(2f3 --f~f2f3) Q~] IPlPzP3) 
(29) 

Here we have used an operator notation. The functions Q correspond to 
the Moeller operator of scattering theory. They are connected with the 
two-particle T matrix by 

~2(E12 + tO) = Vlzg?~2(E12 + i0) (30) 

A similar expression for I R was also found by other authors/5,7) From a 
principle point of view IR is very important as it compensates for the suc- 
cessive binary collisions in the three-particle integral. Further it ensures the 
conservation of the energy in binary collision approximation. Therefore the 
kinetic equation (24) is suited to describe nonideal gases. (6) 

It is the quantum mechanical generalization of the well-known kinetic 
equation for classical dense gases. (13A4) 

822/41/3 4-21 
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